概念排序指标公式(排列数性质的推导过程?)
1. 排列数性质的推导过程?
排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择,则排列数A(n
m)=n*(n-1)*(n-2)...*(n-m+1)
由阶乘的定义可知A(n
m)=[n*(n-1)*(n-2)...*(n-m+1)]*[(n-m)*(n-m-1)...*1]/[(n-m)*(n-m-1)...*1]
上下合并可得A(n
m)=n!/(n-m)!
组合公式对应另一个模型,取出m个成为一组(无序),可以先考虑排列A(n
m),由于m个元素组成的一组可以有m!种不同的排列(全排列A(m
m)=m!),所以组合的总数就是A(n
m)/m!
即为C(n
m)=A(n
m)/m!=n!/[m!*(n-m)!]
2. 升幂排列和降幂排列概念?
降幂排列:
把一个多项式的各项按照某个字母的指数从大到小的顺序排列,叫做这一字母的降幂。如ab+(-2ba)+a为a的降幂。
理论内容:
降幂公式:(cosa)^2=(1+COS2a)/2sin^2a=(1-COS2a)/2
X的n次方。X是底数,n是幂次(故又称X的n次幂)
只有幂次n相同的项才能进行混合运算。降幂就是把n的数值减小以利于运算。
排列:
一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当m=n时,这个排列被称作全排列(all permutation)。
扩展资料:
理论根据:
把一个多项式按某一个字母升(降)幂排列的理论根据是加法的交换律和结合律。
升幂:
把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。多项式按某个字母的升幂或降幂排列时,有时会出现缺项的现象,例如,x3+2x-1中,缺少x2项,这时x2项的系数为0,这项就不写。
例如,多项式8x2-7x3y+6xy2-1,按x的升幂排列为:-1+6xy2+8x2-7x3y。
参考资料来源:
3. 排列组合的所有公式和理解?
排列组合的公式是排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)/m!;C(n,m)=C(n,n-m)。(n≥m)其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,
...nk
这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。4. 排列组合中的C和A怎么算?
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
计算公式:
此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
计算公式:
;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。