美联储加息25个基点并暗示暂停,鲍威尔称“现在降息为时过早”
1. 跪求高手指导,航海钟原理分析与讲解?
机械式航海钟原理:单摆的周期不变,单摆运动一周期,秒针走一次或两次。
但是海上有波浪等会使单摆收到摇动,这一过程使单摆受了除重力外的其他力,周期改变了,时间也不准。为了使得时钟单摆每次受到相同力作用,将时钟单摆背侧与弹簧相连,每次弹簧拉伸、压缩,依靠相同的力使得单摆等时地摇动,保证了秒针走动一次的时间是相等的。 航海钟(Chronometer)又称航海天文钟或精密钟,是偏差0.5秒的高精度、可携带的机械计时仪表。可以用来指示时刻、测量时间间隔,检定各种机械式秒表以及航海定位和野外天文观测。随着电子技术的发展及晶体振荡器的普遍应用,走时准确的石英天文钟逐渐取代了机械式航海钟。2. 跪求高手指导,航海钟原理分析与讲解?
机械式航海钟原理:单摆的周期不变,单摆运动一周期,秒针走一次或两次。
但是海上有波浪等会使单摆收到摇动,这一过程使单摆受了除重力外的其他力,周期改变了,时间也不准。为了使得时钟单摆每次受到相同力作用,将时钟单摆背侧与弹簧相连,每次弹簧拉伸、压缩,依靠相同的力使得单摆等时地摇动,保证了秒针走动一次的时间是相等的。 航海钟(Chronometer)又称航海天文钟或精密钟,是偏差0.5秒的高精度、可携带的机械计时仪表。可以用来指示时刻、测量时间间隔,检定各种机械式秒表以及航海定位和野外天文观测。随着电子技术的发展及晶体振荡器的普遍应用,走时准确的石英天文钟逐渐取代了机械式航海钟。3. 跪求高手指导,航海钟原理分析与讲解?
机械式航海钟原理:单摆的周期不变,单摆运动一周期,秒针走一次或两次。
但是海上有波浪等会使单摆收到摇动,这一过程使单摆受了除重力外的其他力,周期改变了,时间也不准。为了使得时钟单摆每次受到相同力作用,将时钟单摆背侧与弹簧相连,每次弹簧拉伸、压缩,依靠相同的力使得单摆等时地摇动,保证了秒针走动一次的时间是相等的。 航海钟(Chronometer)又称航海天文钟或精密钟,是偏差0.5秒的高精度、可携带的机械计时仪表。可以用来指示时刻、测量时间间隔,检定各种机械式秒表以及航海定位和野外天文观测。随着电子技术的发展及晶体振荡器的普遍应用,走时准确的石英天文钟逐渐取代了机械式航海钟。4. 音暴是怎么回事?
当飞行器的速度达到音速左右(1193km/h)时,就会压缩周围的空气,从而使空气中的水汽凝结成云。
但它并不总是伴随着音爆现象的产生,同时也未必是音障被突破时所产生的冲击波。
当物体的速度接近音速时,将会逐渐追上自己发出的声波。
此时,由于机身对空气的压缩无法迅速传播,将逐渐在飞机的迎风面及其附近区域积累,最终形成空气中压强、温度、速度、密度等物理性质的一个突变面--激波面。
激波面将增加空气对飞行器的阻力,俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥 。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
除此之外,跨音速飞行常常伴随的一个效应称为普朗特-格劳厄脱凝结云,表现为以飞机为中心轴、从机翼前段开始向四周均匀扩散的圆锥状云团。
这是由于气流流速突破音速时比空气传导速度更快,无法有效向下拉气流,导致密度减小,气压降低,水气凝结。
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面。
但如果是在水面上运动的物体在水中激起的水波是从艇前开始,呈一楔形向外传播。
其前缘密集,波浪很大,而后面波浪就很小。这种波称为楔形水波。
此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。声音就是声波传入耳内刺激鼓膜产生的。
当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。
当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。
这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。
激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。
当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。
这种响声就称之为“音爆”。
激波的形成是超音速飞行的典型特征。
激波面将增加空气对飞行器的阻力,这种因为音速造成提升速度的障碍被俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
5. 跪求高手指导,航海钟原理分析与讲解?
机械式航海钟原理:单摆的周期不变,单摆运动一周期,秒针走一次或两次。
但是海上有波浪等会使单摆收到摇动,这一过程使单摆受了除重力外的其他力,周期改变了,时间也不准。为了使得时钟单摆每次受到相同力作用,将时钟单摆背侧与弹簧相连,每次弹簧拉伸、压缩,依靠相同的力使得单摆等时地摇动,保证了秒针走动一次的时间是相等的。 航海钟(Chronometer)又称航海天文钟或精密钟,是偏差0.5秒的高精度、可携带的机械计时仪表。可以用来指示时刻、测量时间间隔,检定各种机械式秒表以及航海定位和野外天文观测。随着电子技术的发展及晶体振荡器的普遍应用,走时准确的石英天文钟逐渐取代了机械式航海钟。6. 音暴是怎么回事?
当飞行器的速度达到音速左右(1193km/h)时,就会压缩周围的空气,从而使空气中的水汽凝结成云。
但它并不总是伴随着音爆现象的产生,同时也未必是音障被突破时所产生的冲击波。
当物体的速度接近音速时,将会逐渐追上自己发出的声波。
此时,由于机身对空气的压缩无法迅速传播,将逐渐在飞机的迎风面及其附近区域积累,最终形成空气中压强、温度、速度、密度等物理性质的一个突变面--激波面。
激波面将增加空气对飞行器的阻力,俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥 。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
除此之外,跨音速飞行常常伴随的一个效应称为普朗特-格劳厄脱凝结云,表现为以飞机为中心轴、从机翼前段开始向四周均匀扩散的圆锥状云团。
这是由于气流流速突破音速时比空气传导速度更快,无法有效向下拉气流,导致密度减小,气压降低,水气凝结。
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面。
但如果是在水面上运动的物体在水中激起的水波是从艇前开始,呈一楔形向外传播。
其前缘密集,波浪很大,而后面波浪就很小。这种波称为楔形水波。
此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。声音就是声波传入耳内刺激鼓膜产生的。
当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。
当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。
这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。
激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。
当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。
这种响声就称之为“音爆”。
激波的形成是超音速飞行的典型特征。
激波面将增加空气对飞行器的阻力,这种因为音速造成提升速度的障碍被俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
7. 音暴是怎么回事?
当飞行器的速度达到音速左右(1193km/h)时,就会压缩周围的空气,从而使空气中的水汽凝结成云。
但它并不总是伴随着音爆现象的产生,同时也未必是音障被突破时所产生的冲击波。
当物体的速度接近音速时,将会逐渐追上自己发出的声波。
此时,由于机身对空气的压缩无法迅速传播,将逐渐在飞机的迎风面及其附近区域积累,最终形成空气中压强、温度、速度、密度等物理性质的一个突变面--激波面。
激波面将增加空气对飞行器的阻力,俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥 。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
除此之外,跨音速飞行常常伴随的一个效应称为普朗特-格劳厄脱凝结云,表现为以飞机为中心轴、从机翼前段开始向四周均匀扩散的圆锥状云团。
这是由于气流流速突破音速时比空气传导速度更快,无法有效向下拉气流,导致密度减小,气压降低,水气凝结。
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面。
但如果是在水面上运动的物体在水中激起的水波是从艇前开始,呈一楔形向外传播。
其前缘密集,波浪很大,而后面波浪就很小。这种波称为楔形水波。
此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。声音就是声波传入耳内刺激鼓膜产生的。
当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。
当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。
这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。
激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。
当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。
这种响声就称之为“音爆”。
激波的形成是超音速飞行的典型特征。
激波面将增加空气对飞行器的阻力,这种因为音速造成提升速度的障碍被俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
8. 音暴是怎么回事?
当飞行器的速度达到音速左右(1193km/h)时,就会压缩周围的空气,从而使空气中的水汽凝结成云。
但它并不总是伴随着音爆现象的产生,同时也未必是音障被突破时所产生的冲击波。
当物体的速度接近音速时,将会逐渐追上自己发出的声波。
此时,由于机身对空气的压缩无法迅速传播,将逐渐在飞机的迎风面及其附近区域积累,最终形成空气中压强、温度、速度、密度等物理性质的一个突变面--激波面。
激波面将增加空气对飞行器的阻力,俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥 。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。
除此之外,跨音速飞行常常伴随的一个效应称为普朗特-格劳厄脱凝结云,表现为以飞机为中心轴、从机翼前段开始向四周均匀扩散的圆锥状云团。
这是由于气流流速突破音速时比空气传导速度更快,无法有效向下拉气流,导致密度减小,气压降低,水气凝结。
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面。
但如果是在水面上运动的物体在水中激起的水波是从艇前开始,呈一楔形向外传播。
其前缘密集,波浪很大,而后面波浪就很小。这种波称为楔形水波。
此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。声音就是声波传入耳内刺激鼓膜产生的。
当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。
当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。
这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。
激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。
当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。
这种响声就称之为“音爆”。
激波的形成是超音速飞行的典型特征。
激波面将增加空气对飞行器的阻力,这种因为音速造成提升速度的障碍被俗称为音障。
飞行器进入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音锥。
音锥在听觉上是一声短暂而极其强烈(可能超越人耳的听觉)的爆炸声,故称为音爆或声爆(Sonic Boom)。