能源,原料,资源的区别,举例说明?(新能源电池原材料明细?)
1. 能源,原料,资源的区别,举例说明?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
2. 新能源电池原材料明细?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
5、可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。
3. 新能源电池原材料明细?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
5、可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。
4. 什么是能源原料?
凡是能源工业及能源技术所需的材料都可称为能源材料。但在新材料领域,能源材料往往指那些正在发展的、可能支持建立新能源系统满足各种新能源及节能技术的特殊要求的材料。能源材料的分类在国际上尚未见有明确的规定,可以按材料种类来分,也可以按使用用途来分。
5. 能源,原料,资源的区别,举例说明?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
6. 能源,原料,资源的区别,举例说明?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
7. 能源和原料的区别?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。
能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
8. 什么是能源原料?
凡是能源工业及能源技术所需的材料都可称为能源材料。但在新材料领域,能源材料往往指那些正在发展的、可能支持建立新能源系统满足各种新能源及节能技术的特殊要求的材料。能源材料的分类在国际上尚未见有明确的规定,可以按材料种类来分,也可以按使用用途来分。
9. 什么是能源原料?
凡是能源工业及能源技术所需的材料都可称为能源材料。但在新材料领域,能源材料往往指那些正在发展的、可能支持建立新能源系统满足各种新能源及节能技术的特殊要求的材料。能源材料的分类在国际上尚未见有明确的规定,可以按材料种类来分,也可以按使用用途来分。
10. 新能源电池原材料明细?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
5、可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。
11. 能源和原料的区别?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。
能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
12. 什么是能源原料?
凡是能源工业及能源技术所需的材料都可称为能源材料。但在新材料领域,能源材料往往指那些正在发展的、可能支持建立新能源系统满足各种新能源及节能技术的特殊要求的材料。能源材料的分类在国际上尚未见有明确的规定,可以按材料种类来分,也可以按使用用途来分。
13. 新能源电池原材料明细?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
5、可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。
14. 新能源的原材料有哪些?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
15. 能源,原料,资源的区别,举例说明?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
16. 能源和原料的区别?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。
能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
17. 新能源的原材料有哪些?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
18. 能源和原料的区别?
能源主要是指那些能够提供能量的物质;而原料则是为产品的生产提供来源的物质;也就是只一种物质通过生产加工变成了另一种物质的材料就是原料。
能源和原料既有区别也有联系,有一部能源也可以作为原料,比如石油、天然气、煤炭等;而有一部分则不能作为原料只能作为能源,如风能,太阳能,潮汐能等。所以能源是可以通过能量转化的,是要求满足热力学第一定律的。
19. 新能源的原材料有哪些?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
20. 电厂用什么原材料发电?
电厂可以用来发电的材料,有许多种,作为比较传统的发电材料,一般都是采用煤作为原料进行火力发电,也有的电厂采用石油作为发电材料,随着新能源发电材料的应用,有许多新能源的材料成为发电的原料,例如风力发电,太阳能发电,光伏发电,水力发电等等,将来的发展方向就是新能源发电,核电也成为一种发电的主流趋势
21. 电厂用什么原材料发电?
电厂可以用来发电的材料,有许多种,作为比较传统的发电材料,一般都是采用煤作为原料进行火力发电,也有的电厂采用石油作为发电材料,随着新能源发电材料的应用,有许多新能源的材料成为发电的原料,例如风力发电,太阳能发电,光伏发电,水力发电等等,将来的发展方向就是新能源发电,核电也成为一种发电的主流趋势
22. 新能源的原材料有哪些?
新能源电池材料有超导材料、太阳能电池材料、储氢材料、固体氧化物电池材料智能材料、磁性材料、纳米材料。相关点:
1、新能源新材料是在环保理念推出之后引发的对不可再生资源节约利用的一种新的科技理念;
2、新能源新材料特点:性能超群的一些材料,具有比传统材料更为优异的性能;
3、未来的几种新能源新材料:波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源;
4、煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体;
23. 电厂用什么原材料发电?
电厂可以用来发电的材料,有许多种,作为比较传统的发电材料,一般都是采用煤作为原料进行火力发电,也有的电厂采用石油作为发电材料,随着新能源发电材料的应用,有许多新能源的材料成为发电的原料,例如风力发电,太阳能发电,光伏发电,水力发电等等,将来的发展方向就是新能源发电,核电也成为一种发电的主流趋势
24. 电厂用什么原材料发电?
电厂可以用来发电的材料,有许多种,作为比较传统的发电材料,一般都是采用煤作为原料进行火力发电,也有的电厂采用石油作为发电材料,随着新能源发电材料的应用,有许多新能源的材料成为发电的原料,例如风力发电,太阳能发电,光伏发电,水力发电等等,将来的发展方向就是新能源发电,核电也成为一种发电的主流趋势
25. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
26. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
27. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
28. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。