哪些气体属于能源(气体可以成为能源吗?)
1. 气体可以成为能源吗?
二氧化碳作为物质不能直接转化成能源,但是可以作为能源转化的载体,比如光合作用借助二氧化碳把太阳能转化成化学能固定在植物中。 当然了,物质通过质量衰减也能转成能源,看哪天能把二氧化碳或者任何一种物质弄的完全湮灭,那能源几乎就无限了。
2. 液态气体是否属于能源
属于,比如:液氢、液化石油气等。
3. 请帮我解释“能源”都包括什么?
能源是自然界中能为人类提供某种形式能量的物质资源。
人们通常接能源的形态特征或转换与应用的层次对它进行分类。世界能源委员会推荐的能源类型分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中。前三个类型统称化石燃料或化石能源。已被人类认识的上述能源,在一定条件下可以转换为人们所需的某种形式的能量。比如薪柴和煤炭,把它们加热到一定温度,它们能和空气中的氧气化合并放出大量的热能。我们可以用热来取暖、做饭或制冷,也可以用热来产生蒸汽,用蒸汽推动汽轮机,使热能变成机械能;也可以用汽轮机带动发电机,使机械能变成电能;如果把电送到工厂、企业、机关、农牧林区和住户,它又可以转换成机械能、光能或热能。
4. 气体可以成为能源吗?
二氧化碳作为物质不能直接转化成能源,但是可以作为能源转化的载体,比如光合作用借助二氧化碳把太阳能转化成化学能固定在植物中。 当然了,物质通过质量衰减也能转成能源,看哪天能把二氧化碳或者任何一种物质弄的完全湮灭,那能源几乎就无限了。
5. 气体可以成为能源吗?
二氧化碳作为物质不能直接转化成能源,但是可以作为能源转化的载体,比如光合作用借助二氧化碳把太阳能转化成化学能固定在植物中。 当然了,物质通过质量衰减也能转成能源,看哪天能把二氧化碳或者任何一种物质弄的完全湮灭,那能源几乎就无限了。
6. 液态气体是否属于能源
属于,比如:液氢、液化石油气等。
7. 气体可以成为能源吗?
二氧化碳作为物质不能直接转化成能源,但是可以作为能源转化的载体,比如光合作用借助二氧化碳把太阳能转化成化学能固定在植物中。 当然了,物质通过质量衰减也能转成能源,看哪天能把二氧化碳或者任何一种物质弄的完全湮灭,那能源几乎就无限了。
8. 请帮我解释“能源”都包括什么?
能源是自然界中能为人类提供某种形式能量的物质资源。
人们通常接能源的形态特征或转换与应用的层次对它进行分类。世界能源委员会推荐的能源类型分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中。前三个类型统称化石燃料或化石能源。已被人类认识的上述能源,在一定条件下可以转换为人们所需的某种形式的能量。比如薪柴和煤炭,把它们加热到一定温度,它们能和空气中的氧气化合并放出大量的热能。我们可以用热来取暖、做饭或制冷,也可以用热来产生蒸汽,用蒸汽推动汽轮机,使热能变成机械能;也可以用汽轮机带动发电机,使机械能变成电能;如果把电送到工厂、企业、机关、农牧林区和住户,它又可以转换成机械能、光能或热能。
9. 请帮我解释“能源”都包括什么?
能源是自然界中能为人类提供某种形式能量的物质资源。
人们通常接能源的形态特征或转换与应用的层次对它进行分类。世界能源委员会推荐的能源类型分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中。前三个类型统称化石燃料或化石能源。已被人类认识的上述能源,在一定条件下可以转换为人们所需的某种形式的能量。比如薪柴和煤炭,把它们加热到一定温度,它们能和空气中的氧气化合并放出大量的热能。我们可以用热来取暖、做饭或制冷,也可以用热来产生蒸汽,用蒸汽推动汽轮机,使热能变成机械能;也可以用汽轮机带动发电机,使机械能变成电能;如果把电送到工厂、企业、机关、农牧林区和住户,它又可以转换成机械能、光能或热能。
10. 液态气体是否属于能源
属于,比如:液氢、液化石油气等。
11. 请帮我解释“能源”都包括什么?
能源是自然界中能为人类提供某种形式能量的物质资源。
人们通常接能源的形态特征或转换与应用的层次对它进行分类。世界能源委员会推荐的能源类型分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中。前三个类型统称化石燃料或化石能源。已被人类认识的上述能源,在一定条件下可以转换为人们所需的某种形式的能量。比如薪柴和煤炭,把它们加热到一定温度,它们能和空气中的氧气化合并放出大量的热能。我们可以用热来取暖、做饭或制冷,也可以用热来产生蒸汽,用蒸汽推动汽轮机,使热能变成机械能;也可以用汽轮机带动发电机,使机械能变成电能;如果把电送到工厂、企业、机关、农牧林区和住户,它又可以转换成机械能、光能或热能。
12. 液态气体是否属于能源
属于,比如:液氢、液化石油气等。
13. 法国加拿大美国俄罗斯澳大利亚最主要的能源?
法国
法国在能源方面最大的特征是核能大国。一次能源中有4成多是核能,并向多个国家出口电力。另一方面,法国国内资源贫乏,石油、天然气和煤炭的大部分都要依靠进口。
其能源政策的基本方针是,能源自给、实现有竞争力的能源价格、削减温室气体、向全体国民提供能源等,其中心措施为推进核能。
法国也在推进采用可再生能源。
欧洲风力能源协会的调查结果显示,2010年法国采用了108.6万千瓦的风力发电设备,2010年年底发电规模达到了566万千瓦。2009年的装机容量规模在欧洲仅次於西班牙和德国,累计规模也排名第四。
法国政府一直从潜在能力、供电能力及景观等方面考虑,指定可建设风力发电设施的地区。从地区来看,在北部的皮卡第(Picardie)、洛兰(Lorraine),中部Centre地区,西北部布列塔尼(Bretagne)等地区,采用风力发电发展较快,在今后的计划中,也是在这些地区以及香槟-阿登地区(champagne-ardenne)的预定建设项目多。
法国今后将继续扩大利用可再生能源。法国政府描绘了这样一幅蓝图,到2020年使风力发电的采用规模扩大到2500万千瓦,把其培育成可与水力发电相媲美的电力资源。
加拿大
加拿大河流和湖泊众多,这也使得该国成为世界第二大水力发电国家,全国能源的60%都来自水 力发电。不过目前加拿大的水力发电仍有很大的潜力可挖。根据加拿大今年2月的一份报告,该国从2011年到2030年间将投入3475亿加元用於建设新的电力设施。而根据以往的经验,很大一部分投入将用於建设水力发电站上。
加拿大还是世界上第六大利用风能发电的国家。近两年来,加拿大风能发电经历了大幅度的发展。到2011年12月,加拿大风能发电约达5177兆瓦,风能发电约占加拿大电力需求的2%。加拿大风能协会预计,在15年的时间内该国风能发电能翻10番,在电力需求的比例能占到20%。到2050年,风能工业预计将给加拿大创造52000个新的工作岗位。
美国
美国再生能源发电占新发电容量比重渐增。美国联邦能源管理委员会(Federal Energy Regulatory Commission, FERC)能源计画办公室最近公布的”能源结构更新”资料显示,2013年10月份太阳能、生质能源和风力合计的新发电容量为694百万瓦,占全部新上线发电的99.3%。
10月份的新发电容量中以12座共504百万瓦容量的新太阳能发电站占72.1%居先,其後为4座生质发电站(124百万瓦,占17.7%)和2座风力发电场(66百万瓦,占9.4%)。
2013年前10个月内再生能源(生质、地热、太阳能、水力和风力发电)共占新发电容量的32.8%,比燃煤发电(1,543百万瓦,12.5%)、燃油发电(36百万瓦,0.3%)高出很多。
2013年1月至10月太阳能发电占新发电容量的20.5%(2,528百万瓦),是上年度同期(1,257百万瓦)的两倍多。然而,天燃气则以6,625百万瓦的新发电容量占53.7%居前。
2013年前10个月的各能源全部17,008百万瓦新发电容量则较上年度同期的12,327百万瓦衰退27.5%之多。
至目前为止,再生能源约占全美营运发电容量的16%,包括:水力为8.3%、风力为5.21%、生质为1.32%、太阳能为0.59%、地热为0.33%,大於核能(9.22%)和燃油(4.06%)两项的合计。
另外,美国能源部的美国能源资讯署发行的最近一期电力月刊(Electric Power Monthly)指出,2013年前三季,再生能源发电占净发电的12.95%(水力--6.90%、风力--4.03%、生质--1.40% 、地热--0.41%、太阳能--0.21%)。
俄罗斯
除核电外,俄罗斯的其他非化石能源模式也方兴未艾。“俄罗斯可再生能源潜力巨大。”
俄罗斯每年产生1亿吨生物废料用于发电,目前,这些生物质能可产生3亿兆瓦时的电量。另外尽管俄罗斯不是世界上太阳能最丰富的国家,但小型太阳能发电机却广受欢迎。他们在自己住宅或别墅安装太阳能装置。
水电在俄罗斯电力结构中起到很大作用,被视为保证国家统一电力系统可靠性的关键因素。俄罗斯已投入运行的水电装机容量为49.7吉瓦,其中装机容量大于10兆瓦的水电站有85座。为了实现到2020年水电装机达60吉瓦的国家电力战略目标,俄罗斯国有水力发电公司正在加大水电开发力度。
而虽然俄罗斯拥有巨大的非化石能源潜力,但正在运行或待建的项目屈指可数。阻碍俄非化石能源发展的因素来自多方面。首先,受丰富的传统能源石油、天然气的影响,俄政府很难改变原有的能源结构,非化石能源领域缺乏先进技术和专业人才。其次,政策上,缺少相应的财政机制和优惠的税收政策。再者,可再生能源也有自己的劣势,如光伏发电受昼夜和季节变化影响较大;生物质发电占地面积大、效率低等。另外,建设非化石能源电厂要比建设常规火电厂造价昂贵,投资回报期也长。
近几年,在世界范围内可再生能源技术蓬勃发展,许多国家都走向了自己的非化石能源时代。眼看各国争先恐后地发展非化石能源,俄罗斯也不甘人后。为达到非化石能源战略预定目标,俄政府计划在2020年前拨出3万亿卢布用于发展可再生能源发电。其中,5000亿卢布为国家预算资金,2.5万亿卢布为私人投资者资金,未来装机能力将达200亿瓦。其中,80亿瓦装机能力主要是生物质发电;70亿瓦为风能发电;40亿瓦为小型水力发电;10亿瓦为小型模块式发电、地热发电、潮汐发电、太阳能发电等。俄罗斯能源部也称,目前正在制定可再生能源等一系列相关法律条例,用于扶持太阳能、风能和生物发电。
澳大利亚
澳大利亚得天独厚的自然资源,为其发展清洁能源奠定了雄厚物质基础。澳拥有100余座水电站;建有61个风电场、1353个风力发电机组,总装机容量约为2500兆瓦。作为全球光照资源最为丰富的国家(90%以上的地面光照强度超过1950千瓦时/平方米),其太阳能发电特别是光伏产业的发展潜力巨大。2011年,光伏发电能力达1.4吉瓦,其中新增837兆瓦,成为世界光伏增量最大的十个市场之一。澳大利亚的生物质、波能和热岩地热等资源也十分丰富。
澳大利亚是首个提出“可再生能源目标”的国家。到2020年,可再生能源发电量在总发电量中的比重要从目前的8%提升至20%,即达到45000吉瓦时。权威机构据此预测,未来10年内,澳大利亚的可再生能源发电规模至少应达到20吉瓦(其中光伏安装容量将达到5吉瓦),是现有规模的5倍,将创造360亿澳元的投资机会。
它同时是全球利用太阳能能源最为广泛与先进的国家之一,太阳能技术被广泛的应用在工业,农业,民用设施等领域。自1990年代开始後,澳洲大量兴建太阳能发电厂以取代核电站的作用,太阳能能源与风力发电在全国被大力推广。此外墨尔本亦是世界上第一个使用太阳能动力供给城市交通灯以及储存太阳能供应路灯电力的城市。
14. 法国加拿大美国俄罗斯澳大利亚最主要的能源?
法国
法国在能源方面最大的特征是核能大国。一次能源中有4成多是核能,并向多个国家出口电力。另一方面,法国国内资源贫乏,石油、天然气和煤炭的大部分都要依靠进口。
其能源政策的基本方针是,能源自给、实现有竞争力的能源价格、削减温室气体、向全体国民提供能源等,其中心措施为推进核能。
法国也在推进采用可再生能源。
欧洲风力能源协会的调查结果显示,2010年法国采用了108.6万千瓦的风力发电设备,2010年年底发电规模达到了566万千瓦。2009年的装机容量规模在欧洲仅次於西班牙和德国,累计规模也排名第四。
法国政府一直从潜在能力、供电能力及景观等方面考虑,指定可建设风力发电设施的地区。从地区来看,在北部的皮卡第(Picardie)、洛兰(Lorraine),中部Centre地区,西北部布列塔尼(Bretagne)等地区,采用风力发电发展较快,在今后的计划中,也是在这些地区以及香槟-阿登地区(champagne-ardenne)的预定建设项目多。
法国今后将继续扩大利用可再生能源。法国政府描绘了这样一幅蓝图,到2020年使风力发电的采用规模扩大到2500万千瓦,把其培育成可与水力发电相媲美的电力资源。
加拿大
加拿大河流和湖泊众多,这也使得该国成为世界第二大水力发电国家,全国能源的60%都来自水 力发电。不过目前加拿大的水力发电仍有很大的潜力可挖。根据加拿大今年2月的一份报告,该国从2011年到2030年间将投入3475亿加元用於建设新的电力设施。而根据以往的经验,很大一部分投入将用於建设水力发电站上。
加拿大还是世界上第六大利用风能发电的国家。近两年来,加拿大风能发电经历了大幅度的发展。到2011年12月,加拿大风能发电约达5177兆瓦,风能发电约占加拿大电力需求的2%。加拿大风能协会预计,在15年的时间内该国风能发电能翻10番,在电力需求的比例能占到20%。到2050年,风能工业预计将给加拿大创造52000个新的工作岗位。
美国
美国再生能源发电占新发电容量比重渐增。美国联邦能源管理委员会(Federal Energy Regulatory Commission, FERC)能源计画办公室最近公布的”能源结构更新”资料显示,2013年10月份太阳能、生质能源和风力合计的新发电容量为694百万瓦,占全部新上线发电的99.3%。
10月份的新发电容量中以12座共504百万瓦容量的新太阳能发电站占72.1%居先,其後为4座生质发电站(124百万瓦,占17.7%)和2座风力发电场(66百万瓦,占9.4%)。
2013年前10个月内再生能源(生质、地热、太阳能、水力和风力发电)共占新发电容量的32.8%,比燃煤发电(1,543百万瓦,12.5%)、燃油发电(36百万瓦,0.3%)高出很多。
2013年1月至10月太阳能发电占新发电容量的20.5%(2,528百万瓦),是上年度同期(1,257百万瓦)的两倍多。然而,天燃气则以6,625百万瓦的新发电容量占53.7%居前。
2013年前10个月的各能源全部17,008百万瓦新发电容量则较上年度同期的12,327百万瓦衰退27.5%之多。
至目前为止,再生能源约占全美营运发电容量的16%,包括:水力为8.3%、风力为5.21%、生质为1.32%、太阳能为0.59%、地热为0.33%,大於核能(9.22%)和燃油(4.06%)两项的合计。
另外,美国能源部的美国能源资讯署发行的最近一期电力月刊(Electric Power Monthly)指出,2013年前三季,再生能源发电占净发电的12.95%(水力--6.90%、风力--4.03%、生质--1.40% 、地热--0.41%、太阳能--0.21%)。
俄罗斯
除核电外,俄罗斯的其他非化石能源模式也方兴未艾。“俄罗斯可再生能源潜力巨大。”
俄罗斯每年产生1亿吨生物废料用于发电,目前,这些生物质能可产生3亿兆瓦时的电量。另外尽管俄罗斯不是世界上太阳能最丰富的国家,但小型太阳能发电机却广受欢迎。他们在自己住宅或别墅安装太阳能装置。
水电在俄罗斯电力结构中起到很大作用,被视为保证国家统一电力系统可靠性的关键因素。俄罗斯已投入运行的水电装机容量为49.7吉瓦,其中装机容量大于10兆瓦的水电站有85座。为了实现到2020年水电装机达60吉瓦的国家电力战略目标,俄罗斯国有水力发电公司正在加大水电开发力度。
而虽然俄罗斯拥有巨大的非化石能源潜力,但正在运行或待建的项目屈指可数。阻碍俄非化石能源发展的因素来自多方面。首先,受丰富的传统能源石油、天然气的影响,俄政府很难改变原有的能源结构,非化石能源领域缺乏先进技术和专业人才。其次,政策上,缺少相应的财政机制和优惠的税收政策。再者,可再生能源也有自己的劣势,如光伏发电受昼夜和季节变化影响较大;生物质发电占地面积大、效率低等。另外,建设非化石能源电厂要比建设常规火电厂造价昂贵,投资回报期也长。
近几年,在世界范围内可再生能源技术蓬勃发展,许多国家都走向了自己的非化石能源时代。眼看各国争先恐后地发展非化石能源,俄罗斯也不甘人后。为达到非化石能源战略预定目标,俄政府计划在2020年前拨出3万亿卢布用于发展可再生能源发电。其中,5000亿卢布为国家预算资金,2.5万亿卢布为私人投资者资金,未来装机能力将达200亿瓦。其中,80亿瓦装机能力主要是生物质发电;70亿瓦为风能发电;40亿瓦为小型水力发电;10亿瓦为小型模块式发电、地热发电、潮汐发电、太阳能发电等。俄罗斯能源部也称,目前正在制定可再生能源等一系列相关法律条例,用于扶持太阳能、风能和生物发电。
澳大利亚
澳大利亚得天独厚的自然资源,为其发展清洁能源奠定了雄厚物质基础。澳拥有100余座水电站;建有61个风电场、1353个风力发电机组,总装机容量约为2500兆瓦。作为全球光照资源最为丰富的国家(90%以上的地面光照强度超过1950千瓦时/平方米),其太阳能发电特别是光伏产业的发展潜力巨大。2011年,光伏发电能力达1.4吉瓦,其中新增837兆瓦,成为世界光伏增量最大的十个市场之一。澳大利亚的生物质、波能和热岩地热等资源也十分丰富。
澳大利亚是首个提出“可再生能源目标”的国家。到2020年,可再生能源发电量在总发电量中的比重要从目前的8%提升至20%,即达到45000吉瓦时。权威机构据此预测,未来10年内,澳大利亚的可再生能源发电规模至少应达到20吉瓦(其中光伏安装容量将达到5吉瓦),是现有规模的5倍,将创造360亿澳元的投资机会。
它同时是全球利用太阳能能源最为广泛与先进的国家之一,太阳能技术被广泛的应用在工业,农业,民用设施等领域。自1990年代开始後,澳洲大量兴建太阳能发电厂以取代核电站的作用,太阳能能源与风力发电在全国被大力推广。此外墨尔本亦是世界上第一个使用太阳能动力供给城市交通灯以及储存太阳能供应路灯电力的城市。
15. 法国加拿大美国俄罗斯澳大利亚最主要的能源?
法国
法国在能源方面最大的特征是核能大国。一次能源中有4成多是核能,并向多个国家出口电力。另一方面,法国国内资源贫乏,石油、天然气和煤炭的大部分都要依靠进口。
其能源政策的基本方针是,能源自给、实现有竞争力的能源价格、削减温室气体、向全体国民提供能源等,其中心措施为推进核能。
法国也在推进采用可再生能源。
欧洲风力能源协会的调查结果显示,2010年法国采用了108.6万千瓦的风力发电设备,2010年年底发电规模达到了566万千瓦。2009年的装机容量规模在欧洲仅次於西班牙和德国,累计规模也排名第四。
法国政府一直从潜在能力、供电能力及景观等方面考虑,指定可建设风力发电设施的地区。从地区来看,在北部的皮卡第(Picardie)、洛兰(Lorraine),中部Centre地区,西北部布列塔尼(Bretagne)等地区,采用风力发电发展较快,在今后的计划中,也是在这些地区以及香槟-阿登地区(champagne-ardenne)的预定建设项目多。
法国今后将继续扩大利用可再生能源。法国政府描绘了这样一幅蓝图,到2020年使风力发电的采用规模扩大到2500万千瓦,把其培育成可与水力发电相媲美的电力资源。
加拿大
加拿大河流和湖泊众多,这也使得该国成为世界第二大水力发电国家,全国能源的60%都来自水 力发电。不过目前加拿大的水力发电仍有很大的潜力可挖。根据加拿大今年2月的一份报告,该国从2011年到2030年间将投入3475亿加元用於建设新的电力设施。而根据以往的经验,很大一部分投入将用於建设水力发电站上。
加拿大还是世界上第六大利用风能发电的国家。近两年来,加拿大风能发电经历了大幅度的发展。到2011年12月,加拿大风能发电约达5177兆瓦,风能发电约占加拿大电力需求的2%。加拿大风能协会预计,在15年的时间内该国风能发电能翻10番,在电力需求的比例能占到20%。到2050年,风能工业预计将给加拿大创造52000个新的工作岗位。
美国
美国再生能源发电占新发电容量比重渐增。美国联邦能源管理委员会(Federal Energy Regulatory Commission, FERC)能源计画办公室最近公布的”能源结构更新”资料显示,2013年10月份太阳能、生质能源和风力合计的新发电容量为694百万瓦,占全部新上线发电的99.3%。
10月份的新发电容量中以12座共504百万瓦容量的新太阳能发电站占72.1%居先,其後为4座生质发电站(124百万瓦,占17.7%)和2座风力发电场(66百万瓦,占9.4%)。
2013年前10个月内再生能源(生质、地热、太阳能、水力和风力发电)共占新发电容量的32.8%,比燃煤发电(1,543百万瓦,12.5%)、燃油发电(36百万瓦,0.3%)高出很多。
2013年1月至10月太阳能发电占新发电容量的20.5%(2,528百万瓦),是上年度同期(1,257百万瓦)的两倍多。然而,天燃气则以6,625百万瓦的新发电容量占53.7%居前。
2013年前10个月的各能源全部17,008百万瓦新发电容量则较上年度同期的12,327百万瓦衰退27.5%之多。
至目前为止,再生能源约占全美营运发电容量的16%,包括:水力为8.3%、风力为5.21%、生质为1.32%、太阳能为0.59%、地热为0.33%,大於核能(9.22%)和燃油(4.06%)两项的合计。
另外,美国能源部的美国能源资讯署发行的最近一期电力月刊(Electric Power Monthly)指出,2013年前三季,再生能源发电占净发电的12.95%(水力--6.90%、风力--4.03%、生质--1.40% 、地热--0.41%、太阳能--0.21%)。
俄罗斯
除核电外,俄罗斯的其他非化石能源模式也方兴未艾。“俄罗斯可再生能源潜力巨大。”
俄罗斯每年产生1亿吨生物废料用于发电,目前,这些生物质能可产生3亿兆瓦时的电量。另外尽管俄罗斯不是世界上太阳能最丰富的国家,但小型太阳能发电机却广受欢迎。他们在自己住宅或别墅安装太阳能装置。
水电在俄罗斯电力结构中起到很大作用,被视为保证国家统一电力系统可靠性的关键因素。俄罗斯已投入运行的水电装机容量为49.7吉瓦,其中装机容量大于10兆瓦的水电站有85座。为了实现到2020年水电装机达60吉瓦的国家电力战略目标,俄罗斯国有水力发电公司正在加大水电开发力度。
而虽然俄罗斯拥有巨大的非化石能源潜力,但正在运行或待建的项目屈指可数。阻碍俄非化石能源发展的因素来自多方面。首先,受丰富的传统能源石油、天然气的影响,俄政府很难改变原有的能源结构,非化石能源领域缺乏先进技术和专业人才。其次,政策上,缺少相应的财政机制和优惠的税收政策。再者,可再生能源也有自己的劣势,如光伏发电受昼夜和季节变化影响较大;生物质发电占地面积大、效率低等。另外,建设非化石能源电厂要比建设常规火电厂造价昂贵,投资回报期也长。
近几年,在世界范围内可再生能源技术蓬勃发展,许多国家都走向了自己的非化石能源时代。眼看各国争先恐后地发展非化石能源,俄罗斯也不甘人后。为达到非化石能源战略预定目标,俄政府计划在2020年前拨出3万亿卢布用于发展可再生能源发电。其中,5000亿卢布为国家预算资金,2.5万亿卢布为私人投资者资金,未来装机能力将达200亿瓦。其中,80亿瓦装机能力主要是生物质发电;70亿瓦为风能发电;40亿瓦为小型水力发电;10亿瓦为小型模块式发电、地热发电、潮汐发电、太阳能发电等。俄罗斯能源部也称,目前正在制定可再生能源等一系列相关法律条例,用于扶持太阳能、风能和生物发电。
澳大利亚
澳大利亚得天独厚的自然资源,为其发展清洁能源奠定了雄厚物质基础。澳拥有100余座水电站;建有61个风电场、1353个风力发电机组,总装机容量约为2500兆瓦。作为全球光照资源最为丰富的国家(90%以上的地面光照强度超过1950千瓦时/平方米),其太阳能发电特别是光伏产业的发展潜力巨大。2011年,光伏发电能力达1.4吉瓦,其中新增837兆瓦,成为世界光伏增量最大的十个市场之一。澳大利亚的生物质、波能和热岩地热等资源也十分丰富。
澳大利亚是首个提出“可再生能源目标”的国家。到2020年,可再生能源发电量在总发电量中的比重要从目前的8%提升至20%,即达到45000吉瓦时。权威机构据此预测,未来10年内,澳大利亚的可再生能源发电规模至少应达到20吉瓦(其中光伏安装容量将达到5吉瓦),是现有规模的5倍,将创造360亿澳元的投资机会。
它同时是全球利用太阳能能源最为广泛与先进的国家之一,太阳能技术被广泛的应用在工业,农业,民用设施等领域。自1990年代开始後,澳洲大量兴建太阳能发电厂以取代核电站的作用,太阳能能源与风力发电在全国被大力推广。此外墨尔本亦是世界上第一个使用太阳能动力供给城市交通灯以及储存太阳能供应路灯电力的城市。
16. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
17. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
18. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
19. 12种能源是什么?
石油:石油是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
天然气:是指天然蕴藏在地层中的烃类和非烃类气体的混合物。天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
页岩气:页岩气是指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因、热解成因及二者混合成因的天然气。
油页岩:(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩。它和煤的主要区别是灰分超过40%,与碳质页岩的主要区别是含油率大于3.5%。油页岩属于非常规油气资源,以资源丰富和开发利用的可行性而被列为21世纪非常重要的接替能源。它与石油、天然气、煤一样都是不可再生的化石能源。
油砂(Oil sand):亦称“焦油砂”、“重油砂”或“沥青砂”。外观似黑色糖蜜,其开采方法与传统石油开采截然不同。简单地说,油砂开采是“挖掘”石油,而不是“抽取”石油。已露出或近地表的重质残余石油浸染的砂岩,系沥青基原油在运移过程中失掉轻质组分后的产物。砂岩多为淡水及半咸水相。有时也指浸渍轻馏分部分逸出后的一种天然石油的砂或砂岩。可用以提炼重油和沥青。
煤:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会,煤炭的供应安全问题也是我国能源安全中最重要的一环。
石煤:石煤(stone-like coal)是一种含碳少、低热值的燃料,也是一种低品位的多金属共生矿。石煤由4亿至5亿年前地质时期的菌藻类等生物遗体,在浅海环境下经腐泥化作用和煤化作用转变而成。含碳量较高的优质石煤呈黑色,具有半亮光泽,杂质少;含碳量较少的石煤,呈偏灰色,暗淡无光,夹杂有较多的黄铁矿、石英脉和磷、钙质结核。石煤的发热量不高,一般在800大卡/千克左右,是一种低热值燃料。
煤层气:是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净。
天然沥青:天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成的,以天然形态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可分为岩沥青、湖沥青、海底沥青等。铀:铀(Uranium)是原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数十万年~45亿年)。此外还有12种人工同位素(226U~240U)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。
钍:钍是一种放射性金属元素,带钢灰色光泽,质地柔软,化学性质较活泼。钍以化合物的形式存在于矿物内(例如独居石和钍石),通常与稀土金属连系在一起,天然存在钍的是质量数为232的钍同位素。钍经过中子轰击,可得铀-233,因此它是潜在的核燃料。钍广泛分布在地壳中,是一种前景十分可观的能源材料。
地热能〔Geothermal Energy〕:是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地热能是一种新的洁净能源,在当今人们的环保意识日渐增强和能源日趋紧缺的情况下,对地热资源的合理开发利用已愈来愈受到人们的青睐。其中距地表2000米内储藏的地热能堪比2500亿吨标准煤。全国地热可开采资源量为每年68亿立方米,所含地热量为973万亿千焦耳。
可燃冰:天然气水合物(Natural Gas Hydrate/Gas Hydrate),有机化合物,化学式CH4。即可燃冰,是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。
20. 法国加拿大美国俄罗斯澳大利亚最主要的能源?
法国
法国在能源方面最大的特征是核能大国。一次能源中有4成多是核能,并向多个国家出口电力。另一方面,法国国内资源贫乏,石油、天然气和煤炭的大部分都要依靠进口。
其能源政策的基本方针是,能源自给、实现有竞争力的能源价格、削减温室气体、向全体国民提供能源等,其中心措施为推进核能。
法国也在推进采用可再生能源。
欧洲风力能源协会的调查结果显示,2010年法国采用了108.6万千瓦的风力发电设备,2010年年底发电规模达到了566万千瓦。2009年的装机容量规模在欧洲仅次於西班牙和德国,累计规模也排名第四。
法国政府一直从潜在能力、供电能力及景观等方面考虑,指定可建设风力发电设施的地区。从地区来看,在北部的皮卡第(Picardie)、洛兰(Lorraine),中部Centre地区,西北部布列塔尼(Bretagne)等地区,采用风力发电发展较快,在今后的计划中,也是在这些地区以及香槟-阿登地区(champagne-ardenne)的预定建设项目多。
法国今后将继续扩大利用可再生能源。法国政府描绘了这样一幅蓝图,到2020年使风力发电的采用规模扩大到2500万千瓦,把其培育成可与水力发电相媲美的电力资源。
加拿大
加拿大河流和湖泊众多,这也使得该国成为世界第二大水力发电国家,全国能源的60%都来自水 力发电。不过目前加拿大的水力发电仍有很大的潜力可挖。根据加拿大今年2月的一份报告,该国从2011年到2030年间将投入3475亿加元用於建设新的电力设施。而根据以往的经验,很大一部分投入将用於建设水力发电站上。
加拿大还是世界上第六大利用风能发电的国家。近两年来,加拿大风能发电经历了大幅度的发展。到2011年12月,加拿大风能发电约达5177兆瓦,风能发电约占加拿大电力需求的2%。加拿大风能协会预计,在15年的时间内该国风能发电能翻10番,在电力需求的比例能占到20%。到2050年,风能工业预计将给加拿大创造52000个新的工作岗位。
美国
美国再生能源发电占新发电容量比重渐增。美国联邦能源管理委员会(Federal Energy Regulatory Commission, FERC)能源计画办公室最近公布的”能源结构更新”资料显示,2013年10月份太阳能、生质能源和风力合计的新发电容量为694百万瓦,占全部新上线发电的99.3%。
10月份的新发电容量中以12座共504百万瓦容量的新太阳能发电站占72.1%居先,其後为4座生质发电站(124百万瓦,占17.7%)和2座风力发电场(66百万瓦,占9.4%)。
2013年前10个月内再生能源(生质、地热、太阳能、水力和风力发电)共占新发电容量的32.8%,比燃煤发电(1,543百万瓦,12.5%)、燃油发电(36百万瓦,0.3%)高出很多。
2013年1月至10月太阳能发电占新发电容量的20.5%(2,528百万瓦),是上年度同期(1,257百万瓦)的两倍多。然而,天燃气则以6,625百万瓦的新发电容量占53.7%居前。
2013年前10个月的各能源全部17,008百万瓦新发电容量则较上年度同期的12,327百万瓦衰退27.5%之多。
至目前为止,再生能源约占全美营运发电容量的16%,包括:水力为8.3%、风力为5.21%、生质为1.32%、太阳能为0.59%、地热为0.33%,大於核能(9.22%)和燃油(4.06%)两项的合计。
另外,美国能源部的美国能源资讯署发行的最近一期电力月刊(Electric Power Monthly)指出,2013年前三季,再生能源发电占净发电的12.95%(水力--6.90%、风力--4.03%、生质--1.40% 、地热--0.41%、太阳能--0.21%)。
俄罗斯
除核电外,俄罗斯的其他非化石能源模式也方兴未艾。“俄罗斯可再生能源潜力巨大。”
俄罗斯每年产生1亿吨生物废料用于发电,目前,这些生物质能可产生3亿兆瓦时的电量。另外尽管俄罗斯不是世界上太阳能最丰富的国家,但小型太阳能发电机却广受欢迎。他们在自己住宅或别墅安装太阳能装置。
水电在俄罗斯电力结构中起到很大作用,被视为保证国家统一电力系统可靠性的关键因素。俄罗斯已投入运行的水电装机容量为49.7吉瓦,其中装机容量大于10兆瓦的水电站有85座。为了实现到2020年水电装机达60吉瓦的国家电力战略目标,俄罗斯国有水力发电公司正在加大水电开发力度。
而虽然俄罗斯拥有巨大的非化石能源潜力,但正在运行或待建的项目屈指可数。阻碍俄非化石能源发展的因素来自多方面。首先,受丰富的传统能源石油、天然气的影响,俄政府很难改变原有的能源结构,非化石能源领域缺乏先进技术和专业人才。其次,政策上,缺少相应的财政机制和优惠的税收政策。再者,可再生能源也有自己的劣势,如光伏发电受昼夜和季节变化影响较大;生物质发电占地面积大、效率低等。另外,建设非化石能源电厂要比建设常规火电厂造价昂贵,投资回报期也长。
近几年,在世界范围内可再生能源技术蓬勃发展,许多国家都走向了自己的非化石能源时代。眼看各国争先恐后地发展非化石能源,俄罗斯也不甘人后。为达到非化石能源战略预定目标,俄政府计划在2020年前拨出3万亿卢布用于发展可再生能源发电。其中,5000亿卢布为国家预算资金,2.5万亿卢布为私人投资者资金,未来装机能力将达200亿瓦。其中,80亿瓦装机能力主要是生物质发电;70亿瓦为风能发电;40亿瓦为小型水力发电;10亿瓦为小型模块式发电、地热发电、潮汐发电、太阳能发电等。俄罗斯能源部也称,目前正在制定可再生能源等一系列相关法律条例,用于扶持太阳能、风能和生物发电。
澳大利亚
澳大利亚得天独厚的自然资源,为其发展清洁能源奠定了雄厚物质基础。澳拥有100余座水电站;建有61个风电场、1353个风力发电机组,总装机容量约为2500兆瓦。作为全球光照资源最为丰富的国家(90%以上的地面光照强度超过1950千瓦时/平方米),其太阳能发电特别是光伏产业的发展潜力巨大。2011年,光伏发电能力达1.4吉瓦,其中新增837兆瓦,成为世界光伏增量最大的十个市场之一。澳大利亚的生物质、波能和热岩地热等资源也十分丰富。
澳大利亚是首个提出“可再生能源目标”的国家。到2020年,可再生能源发电量在总发电量中的比重要从目前的8%提升至20%,即达到45000吉瓦时。权威机构据此预测,未来10年内,澳大利亚的可再生能源发电规模至少应达到20吉瓦(其中光伏安装容量将达到5吉瓦),是现有规模的5倍,将创造360亿澳元的投资机会。
它同时是全球利用太阳能能源最为广泛与先进的国家之一,太阳能技术被广泛的应用在工业,农业,民用设施等领域。自1990年代开始後,澳洲大量兴建太阳能发电厂以取代核电站的作用,太阳能能源与风力发电在全国被大力推广。此外墨尔本亦是世界上第一个使用太阳能动力供给城市交通灯以及储存太阳能供应路灯电力的城市。