微生物原油(石油可以转化为天然气吗?)
1. 石油可以转化为天然气吗?
利用微生物将石油转化为天然气甲烷,是近年来人们追求是一种廉价、清洁的理想开采方式。过去的研究认为,降解石油烃产甲烷的过程由细菌和古菌通过互营代谢完成,具有耗时久、体系不稳定等问题。
本研究通过对胜利油田样品的长时间富集培养,获得了一类新型的产甲烷古菌(Candidatus Methanoliparum)。通过荧光原位杂交、稳定碳同位素标记培养、宏基因组和宏转录组测序、高分辨质谱等一系列分析结果,证明这类新型的产甲烷古菌可以不与其他微生物合作,绕过复杂过程,直接“吃掉”石油产生甲烷。
该研究证实了该古菌可以独立降解复杂石油烃产甲烷,并提出了一种新的古菌甲烷产生类型,即长链烷烃代谢产甲烷,区别于传统的氢营养型、乙酸还原型和甲基营养型。
2. land oil是什么石油?
石油。石油是指气态、液态和固态烃类混合物,具有天然产状。石油又分为原油、天然气、天然气液及天然焦油等形式,但习惯上仍将“石油”作为“原油”定义用。石油是一种粘稠的、深褐色液体,被称为“工业血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。是地质勘探的主要对象之一。
3. 请谈谈微生物对人类生活有什么影响?
微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。
一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。
有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。
微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。
微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。
以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!
从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。
农业微生物基因组研究认清致病机制发展控制病害的新对策
据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。
经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
环境保护微生物基因组研究找到关键基因降解不同污染物
在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。
极端环境微生物基因组研究深入认识生命本质应用潜力极大
在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
4. 化妆品微生物检测标准?
化妆品中微生物的控制指标和检测标准
微生物对化妆品的污染,不仅影响产品本身的质量,而更严重的是它危及消费者的健康和安全。因此世界各国极为重视,各国都制定了化妆品中微生物的卫生标准,将化妆品中微生物的污染状况作为产品的一个质量指标,以防止和控制微生物对化妆品的污染,这对提高化妆品的质量和保证化妆品的安全性具有重要的意义。
(1)化妆品中微生物的控制指标 关于化妆品中微生物的控制指标,世界上并无统一标准,各国都是依据本国的情况自己制定,表6—17列举了一些国家(包括欧洲共同体)的化妆品的微生物指标。需要说明两点:
①在各国关于化妆品中微生物控制指标的第一项是细菌总数指标,如我国规定在眼部、口唇、口腔粘膜用化妆品以及婴儿和儿童用化妆品细菌总数不得大于500个/ml或500个/8,其他化妆品细菌总数不得大于1000个/mi或1000个屯。它是指在单位容量 (m1)(或单位重量(g))中的细菌个数,这里讲的细菌计数单位是个。而在实际检测化妆品的细菌总数 时,活的细菌总数是通过对检测试样处理后,在一定条件下培养生长出来的细菌菌落形式单位(colony—formingunits,以cfu表示)的个数。
菌落(colony)它是微生物细菌存在的一种特有形式,是指细菌在固体培养基上发育而形成的能被肉眼所识别的生长物,它是由数以万计的相同细菌聚积而成的,,故又有细菌集落之称。所以菌落总数是指每g或每m1化妆品中所含的活菌能于固体培养基上,在一定条件下培养后所生成的细菌集落的总数。基于化妆品试样中的细菌细胞是以单个、成双、链状、葡萄状或成堆的形式存在,因而在培养基平板上出现的菌落可以来源于细胞块,也可以来源于单个细胞,因此所计得需氧及兼性厌氧菌落的数字不应以细菌总数 (或活菌数) “个”表示,而应以单位质量(g)或容量(m1)的菌落形成单位数,即以cfu/8(m1)表示。而一般仍是以个 (m1)表示,只是在实际检测中,检得的实际上是cfu/g(m1)。
②在各国关于化妆品中微生物的第二项指标是,化妆品中不得含有致病菌。关于致病菌的定义在微生物学中应是很清楚的,但其内涵所包括的细菌是很广的。而在化妆品中的微生物这项指标中,所指的致病菌应是特定的确定的细菌。特定菌(Specia microor—ganism)是化妆品中不得检出的特定微生物,包括致病菌和条件致病菌。有关特定菌的确定,目前世界尚无统一规定,各国有所不同。如美国规定的特定菌就有10种:大肠杆菌、克雷伯氏菌、沙门氏菌、变形杆菌、绿脓杆菌、金黄色葡萄球菌、嗜麦芽假单胞菌、多嗜假单胞菌、无硝不动杆菌、粘质沙雷氏菌;欧洲一些国家和日本规定的特定菌为3种,:绿脓杆菌、金黄色葡萄球菌、大肠杆菌(日本为大肠菌群);世界卫生组织WHO规定的特定菌为两种:绿脓杆菌和金黄色葡萄球菌;我国规定的特定菌是3种:绿脓杆菌、金黄色葡萄球菌和粪大肠菌群。我国与日本规定的特定菌相同。
(2)化妆品中微生物的检测标准 我国颁布的化妆品卫生标准,是我国化妆品的卫生法规,全国化妆品生产和销售企业等部门必须执行,卫生监督部门应进行严格监督。为了执行和监督标准的实施,对化妆品进行微生物检验是必不可少的,为了规范化妆品的微生物检验,我国颁布了一系列微生物检验标准方法,计有:化妆品微生物标准检方法——总则、细菌
总数测定、粪大肠菌群、绿脓杆菌、金黄色葡萄球菌等5项标准(GB 7918.1—5.87)。这些标准的实施,使我国化妆品的微生物污染善有明显改善,但化妆品的微生物污染仍是影响我国化妆品产品的质量和安全性的一个重要因素。据某沿海地区卫生部门对该地区623种化妆品进行微生物检测,结果是其中细菌总数超过标准有73种,超标率为11.72%;粪大肠菌群检出有14种,检出率为2.25%;绿脓杆菌检出有14种,检出率为2.25%。由此可见我国化妆品的微生物污染状况不容乐观,还必须大大改善化妆品的卫生状况,提高化妆品的卫生和安全性水平。什么是微生物?微生物是泛指肉眼看不到或看不清楚的微小生物。它们体积微小,结构简单。它与人类关系密切,它既能造福于人类,也能给人类带来毁灭性的灾难。
微生物学在解决当代重大社会问题中起着重要作用。例如微生物采油技术中,它发挥令人难以想象的巨大作用。它可降低原油的黏度,增加原油的流动性,从而大大提高了原油的采收率。此种技术成本低,设备简单,不伤害地层,不污染环境,而且效益显著。1995~2000 年,斯诺克尔石油技术公司实施该技术且获得很好的效益[1]。而日本则把光合菌、乳酸菌、酵母菌、发酵丝状菌、放线菌等功能各异的80 多种微生物组成的一种活菌制剂。这些微生物组合在一个统一体中,互相促进,共同构成一个复杂而稳定的具有多元功能的微生态系统,可抑制有害微生物,尤其是病原菌和腐败细菌的活动,促进植物生长。该技术在自然农法中广泛应用。随着国民经济的发展,微生物的应用也越来越广泛。在生物制药、能源、环保、食品、工业等方面,微生物都扮演着重要的角色。
然而,微生物在给人类提供诸多好处的同时,也带来了许多不可忽视的负面影响。我们用的化妆品含有多种营养成分,为微生物的生长提供了适宜的环境,在生产、储藏和使用过程中极易受到微生物的污染。化妆品中常见细菌主要以芽胞杆菌属、假单胞菌属、葡萄球菌属为主,这几个属的细菌在自然界分布广泛,对环境抵抗力较强,污染机会较多[2]。真菌主要有木霉属、曲霉属、根霉属、脉孢菌属、短梗霉属、假丝酵母属和红酵母属等,这些菌也是自然环境中常见的霉菌和酵母[3]。受到微生物污染的化妆品不但产品腐败变质,更重要的是致病微生物污染会对人体健康产生危害。别外饮水机污染也已成为不可忽视的卫生问题,有的饮水水质量已经远远达不到合格饮用水的卫生质量,所谓的纯净水、矿泉水等已不能直接饮用,主要是被大肠杆菌等微生物污染。这种状况很可能加重夏秋季肠道病的流行。研究人员还指出,室内空气也存在着微生物污染,它可引起人体出现眼刺激感、哮喘、过敏性皮炎、过敏性肺炎和传染性疾病,重者甚至因感染而死亡。室内建筑材料和家用电器是室内空气的主要污染源,它不仅能释放出对人体有害的化学物质,同时也为微生物的孳生提供了有利的条件。
由此可见,微生物与人类的关系非常密切,它不仅造福与人类,也会伤害人类。因此我们应该正确地认识微生物,并利用它保护环境、造福人类,这是我们的期望也是我们每个人义不容辞的责任。