群论,商群的概念是什么?有什么用?(广东十大工程项目?)
1. 群论,商群的概念是什么?有什么用?
在数学和抽象代数中,群论研究名为群的代数结构。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。中文名群论外文名Group Theory基本概念群的定义设 是一个非空集合, 是它的一个二元运算,如果满足以下条件:(1) 封闭性:若 ,则存在唯一确定的 使得 ;(2) 结合律成立,即对 中任意元素 都有 ;(3) 单位元存在:存在 ,对任意 ,满足 。 称为单位元,也称幺元;(4) 逆元存在:任意 ,存在 , ( 为单位元),则称 与 互为逆元素,简称逆元。 记作 ;则称 对 构成一个群。通常称 上的二元运算 为“乘法”,称 为 与 的积,并简写为 。若群 中元素个数是有限的,则 称为有限群。否则称为无限群。有限群的元素个数称为有限群的阶。定义运算对于 ,对于 的子集 ,定义 ,简写为 ; ,简写为 。对于 的子集 , ,定义 ,简写为 。对于 的子集 ,记 。群的替换定理若是群,则对于任一 , 。子群若 是群, 是 的非空子集并且 也是群,那么称 为 的子群。这条定理可以判定 的子集是否为一个子群:且 是 的子群历史群论是法国数学家伽罗瓦(Galois)的发明。伽罗瓦他用该理论,具体来说是伽罗瓦群,解决了五次方程问题。在此之前柯西(Augustin-Louis Cauchy),阿贝尔(Niels Henrik Abel)等人也对群论作出了贡献。最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由J.-L.拉格朗日、P.鲁菲尼、N.H.阿贝尔和E.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群,1832年伽罗瓦证明了:一元 n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”(见有限群)。由于一般的一元n次方程的伽罗瓦群是n个文字的对称群Sn,而当n≥5时Sn不是可解群,所以一般的五次以上一元方程不能用根式求解。伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,A.-L.柯西早在1815年就发表了有关置换群的第一篇论文,并在1844~1846年间对置换群又做了很多工作。至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在C.若尔当的名著“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。在数论中,拉格朗日和C.F.高斯研究过由具有同一判别式D的二次型类,即f=ax^2+2bxy+cy^2,其中a、b、с为整数,x、y 取整数值,且D=b^2-aс为固定值,对于两个型的"复合"乘法,构成一个交换群。J.W.R.戴德金于1858年和L.克罗内克于1870年在其代数数论的研究中也引进了有限交换群以至有限群。这些是导致抽象群论产生的第二个主要来源。在若尔当的专著影响下,(C.)F.克莱因于1872年在其著名的埃尔朗根纲领中指出,几何的分类可以通过无限连续变换群来进行。克莱因和(J.-)H.庞加莱在对 "自守函数”的研究中曾用到其他类型的无限群(即离散群或不连续群)。在1870年前后,索菲斯·李开始研究连续变换群即解析变换李群,用来阐明微分方程的解,并将它们分类。这无限变换群的理论成为导致抽象群论产生的第三个主要来源。A.凯莱于1849年、 1854年和 1878年发表的论文中已然提到接近有限抽象群的概念。F.G.弗罗贝尼乌斯于1879年和E.内托于1882年以及W.F.A.von迪克于 1882~1883年的工作也推进了这方面认识。19世纪80年代,综合上述三个主要来源,数学家们终于成功地概括出抽象群论的公理系统,大约在1890年已得到公认。20世纪初,E.V.亨廷顿,E.H.莫尔,L.E.迪克森等都给出过抽象群的种种独立公理系统,这些公理系统和现代的定义一致。在1896~1911年期间,W.伯恩赛德的“有限群论”先后两版,颇多增益。G.弗罗贝尼乌斯、W.伯恩赛德、I.舒尔建立起有限群的矩阵表示论后,有限群论已然形成。
2. 广东十大工程项目?
广东将重点打造交通强国“十大工程”。
一是加快建设便捷高效的综合运输通道,重点实施跨江跨海通道、国家高速公路扩容和广湛、赣深、广汕汕、梅龙等高速铁路和珠三角城际轨道网;
二是打造协同开放的世界级港口群,重点打造广州—深圳国际航运中心,全面提升大湾区港口群国际竞争力;
三是建设全球通达的世界级机场群,重点推进珠三角枢纽(广州新)机场以及广州白云、深圳宝安机场扩建等工程;
四是打造一体高效的综合交通枢纽,重点推进建设广州、白云、南沙、西丽、江门等一体衔接的综合客运枢纽和广州大田、深圳平湖南、东莞石龙、佛山三水等大型货运枢纽
五是打造交旅融合的高品质旅游公路体系,重点建设滨海旅游公路和南岭生态旅游公路;
六是构建环境友好的绿色交通体系,重点推进公铁海河多式联运示范工程和氢能源交通示范项目;
七是打造泛在融合的智慧交通体系,推进交通基础设施全要素数字化,大力发展自动驾驶与车路协同系统;
八是完善综合交通运输管理体制机制,推进多种运输方式统筹协同发展,公路与城市道路规划建设管理一体化;
九是构建先进适用的技术标准体系,重点开展跨海交通集群工程智能建造成套技术和高速公路改扩建技术标准;
十是建设素质优良的交通人才队伍,重点打造交通运输领域创新平台、高端智库和劳动者培养平台,培育高技能交通人才。
3. 群表示论和群论有什么区别?
群表示论和群论区别是概念不同。
1.
群论,是数学概念。在数学和抽象代数中,群论研究名为群的代数结构。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。
2.
群表示论用具体的线性群(矩阵群)来描述群的理论,是研究群的最有力的工具之一。在19世纪末和20世纪初它由F.G.弗罗贝尼乌斯和W.伯恩赛德独立