期权风险逆转指标(什么是期权定价的BS公式?)
1. 什么是期权定价的BS公式?
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。
B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
2. 股票期权中Delta是什么意思?
Delta值(δ),又称对冲值:是衡量标的资产价格变动时,期权价格的变化幅度 。用公式表示:Delta=期权价格变化/期货价格变化。 期权的风险指标通常用希腊字母来表示,包括:delta值、gamma值、theta值、vega值、rho值等。Delta值(δ),又称对冲值:是衡量标的资产价格变动时,期权价格的变化幅度 。用公式表示:Delta=期权价格变化/标的资产现货价格变化。 认购期权的Delta值为正数(范围在0和+1之间),因为股价上升时,认购期权的价格也会上升。认沽期权的Delta值为负数(范围在-1和0之间),因为股价上升时,认沽期权的价格即会下降。等价认购期权之Delta值会接近0.5,而等价认沽期权的则接近-0.5。
3. 如何对冲期权的Gamma风险?
当持有一个Delta中性交易组合的Gamma为Γ(Γ≠0),我们需要寻找一个期权合约来进行Gamma对冲。假设此合约的Gamma为Γt,加入wt数量的期权到此组合中,这样获得的新交易组合的Gamma为Wt Γt+Γ,要想使得新Gamma值保持中性,投资者需要交易的头寸为Wt =-Γ/Γt=-(104/3.75)=-27.73,故卖出 28 手 A 期权,由于Delta值下降了28*0.566=15.848,故买入 16 份标的资产。所以选A